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Abstract
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1 Introduction

Numerous interactions in the modern economy are conducted on platforms that are con-

trolled by a mediator or principal who is able to track the outcome history of individual

agents. Examples include ride and home sharing firms, auction sites, social networks, and

dating services among others. Incentives in these settings are seldom provided through ex-

plicit monetary channels. Rather, the platform host typically tracks the history of each

agent’s transactions and threatens to punish poor performance with expulsion.

In this paper we analyze a continuous-time platform design problem where the principal

must manage incentives for a continuum of agents who may make costly contributions to

each other’s payoffs. Specifically, the designer maintains a reputation system tied to agents’

performance, whereby agents who hit the bottom of the reputation scale are expelled from

the platform. We also show that agents who hit the top of the scale must be allowed to shirk

for a nonnegligible amount of time; at the top of the scale, an agent’s situation can improve

no further, and thus it is impossible to incentivize effort. Because expulsion and shirking are

both inefficient, each agent’s reputation is linked to his stochastic output with the minimal

sensitivity consistent with incentive compatibility.

Given the law of motion of agents’ continuation values, we employ novel methods to derive

the steady-state of such a platform, where the density of agents at each level of reputation

(or continuation utility) remains constant over time. Using this steady-state, we frame the

principal’s problem which can involve various objective functions. The characteristics of

the steady-state distribution are governed by two parameters: the highest attainable level

of continuation utility on the platform, w∗, and the level at which new agents who enter

the platform are inserted, w0. The steady-state distribution also features several intriguing

features. First, by definition, w = 0 is a resetting boundary in the sense that the flow of

agents being expelled from the platform at that point must equal the flow of new agents

entering at w0. Second, w∗ is a sticky boundary or slow-reflecting barrier in the sense that

an agent reaching this level spends a positive expected measure of time there. Moreover, an

agent exerts low effort if and only if his continuation utility is exactly w∗. Together these

observations imply that the steady-state distribution possesses a positive mass of agents

at the top of the scale who are rewarded by being allowed to exert low effort. Importantly,

since we are studying a platform where agents’ efforts have externalities, these reward periods

affect all agents (and their incentives) by reducing their flow benefits from remaining on the

platform.

For the platform to be sustainable, agents must earn a positive flow payoff from being

on the platform. However, agents are rewarded by being allowed to shirk, and when a larger
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fraction of agents is shirking, all agents obtain a reduced flow payoff from the platform.

Hence, the principal’s ability to reward agents is self-limiting. For most of the paper, we

assume that agents get a fixed, positive flow payoff from the platform as long as the fraction

of agents working is above some threshold. This results in a feasible set of design parameters,

w0 and w∗. We characterize the feasible set and show that it lies below some single-peaked

curve w̄0(w∗) in (w∗, w0)-space.

Next, we investigate the principal’s platform design problem; namely, we allow her to

choose w∗ and w0 subject to feasibility constraints. Depending on the institutional setting,

the principal could have a variety of objective functions. For instance, a principal may want

to maximize the per-capita output of agents, which would involve maximizing the fraction

of agents working. We show that this objective leads to a vanishingly small platform: agents

are promised an arbitrarily small continuation value with virtually no hope of reaching

the shirking state before being kicked off the platform. Alternatively, a profit-maximizing

principal who could charge an entry fee to the platform (e.g., a dating site) would want

to set w0 as high as possible. Under certain conditions, the entire feasible set lies below

the 45-degree line in (w∗, w0)-space, and thus it is possible that the entry-fee maximizing

starting value is strictly lower than the maximum continuation value – despite that agents

are very likely to reach higher continuation values than w0, the principal cannot possibly

promise them a higher starting value without violating feasibility, since higher starting values

imply a larger fraction of agents shirking in a steady state. On the other hand, a principal

who generates revenue primarily through advertising (e.g., a social network) would want to

maximize the size of the platform. In this case, the principal’s objective is increasing in

both w∗ and w0, and an optimal platform lies on the northeastern frontier of the feasible set.

Whatever her objective, we note that by identifying continuation utilities with reputation

scores, the principal’s problem can be thought of as the design of an optimal reputation

system.

Literature

Our paper contributes to several growing strands of research. The first, on the use

of ratings and reputation for incentive compatibility, began with Holmström (1999) and

includes–among others–a recent working paper by Horner and Lambert (2016). These au-

thors investigate the use of reputation as a means for eliciting the rated agent’s cooperation in

a setting where the principal has imperfect control over compensation. In order to maintain

a high reputation–and thereby a high continuation payoff–agents are required to produce a

stream of signals reflective of high effort. We use reputation in much the same way; in our
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setting, an agent is allowed a shirking bonus when his reputation is at the top of the scale,

and he is fired when his reputation hits bottom. At intermediate levels the agent receives a

constant flow payoff so that incentives are provided entirely by the payoffs associated with

the reputational extremes. Control over the distance between the top and bottom of the

scale, therefore, gives the platform designer in our model some power to influence continu-

ation payoffs and to provide incentives for maintaining high effort. This implementation is,

to the best of our knowledge, novel in the optimal contracting setting where we apply it.

Another strand of related research is the continuous time optimal contracting literature

in corporate finance. The pioneering article is DeMarzo and Sannikov (2006) (hereafter DS),

which was followed by a number of related works including Sannikov (2008), Zhu (2013),

and Grochulski and Zhang (2016). Each of these papers investigate variations of the DS

baseline model which we, too, adapt to our setting. Specifically, each of them considers a

single agent who may take some action to produce output or to benefit himself, and solves

for the optimal path of continuation values in order to maximize output. DS implement

their optimal contract by way of basic financial instruments, while the others abstract from

implementation considerations. Like Zhu and Grochulski and Zhang, we find that shirking

is necessary at some points (at the highest level of continuation utility in our setting), where

reputation is temporarily insensitive to performance. Shirking manifests technically as sticky

(or slowly reflecting) Brownian Motion, formalized by Harrison and Lemoine (1981).

There is also a literature on Folk theorems in continuous time with imperfect monitoring

associated with Brownian noise, including Sannikov (2007), Peski and Wiseman (2015), and

Bernard and Frei (2016). These papers derive characterizations of the sets of achievable

payoffs in continuous-time stochastic games such as ours; most closely related is Sannikov

(2007) which uses methods similar to DS and Zhu (2013) that we also employ.1

Finally, our paper contributes to the organizational economics literature. Specifically,

because each agent in our model receives a gross expected payoff equal to the average output

of the platform, our setting resembles a dynamic partnership in which output is divided

equally among the members of the organization as in Farrell and Scotchmer (1988) and

Levin and Tadelis (2005). This partnership aspect, along with the steady-state analysis is

what distinguishes our model from other recent work on dynamic relational contracts such

as Andrews and Barron (2016).

The model is introduced in the next section along with an overview of the method. In

Section 3 we solve for the steady-state distribution of continuation utilities (i.e., reputations)

on the platform for arbitrary values of the policy instruments. Section 4 characterizes the

feasible set. In Section 5 we discuss the principal’s platform design problem for various

1See also the seminal discrete-time models of Abreu et al. (1990) and Green and Porter (1984).
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possible objectives. We outline direction for future work in Section 6.

2 Setup

Time is assumed continuous over an infinite horizon. At each moment there is a positive

measure of massless agents present on a platform. Agents on the platform are indexed by

a continuous variable i. Each agent is risk neutral and discounts the future at rate r. An

agent who exits the platform receives a payoff of 0 from that point forward. A flow of new

agents ψ > 0 enter the platform at each instant.

While on the platform, each agent receives a flow utility u which will, in equilibrium, be

generated by the actions of all the agents on the platform itself. For now, we assume u is a

constant, exogenously determined flow payoff. At each instant, each agent i chooses an effort

level ei ∈ {H,L}; thus each agent i chooses a stream of effort levels, which is a stochastic

process (eit)t≥0. The flow cost of effort is c(eit), defined by c(H) = c > 0 and c(L) = 0. Thus,

high effort has a flow cost c > 0 and low effort has no cost. An agent’s effort generates a

stream of output given by a Brownian diffusion2

dX i
t = (µeit)dt+ dBi

t. (2.1)

The principal (i.e., the platform operator) observes each agent’s stream of output, but

not his effort choice. So that high effort is efficient and low effort is not, we assume that

µH − c > 0 > µL. Since agents with the same continuation utilities are essentially identical,

we suppress the index i whenever doing so does not create confusion. Below we also speak of

the agent with the understanding that we are focussing on a single arbitrary participant on

the platform. A contract in this context specifies: (i) a fixed flow utility u, (ii) a termination

time τ and (iii) a recommended effort process et. Here we consider permanent expulsion at

τ . Also, an agent is free to leave the platform at any point, but may not reenter.

In order to implement a contract, at each instant, the principal assigns each agent a

score or reputation, sit ∈ [0, s∗]. Incoming agents begin with reputation s0, and reputations

evolve according to their observed output. The distribution of agents at each instant thus is

characterized by a population distribution over [0, s∗]. Furthermore, as the agent is motivated

solely by the evolution of his continuation payoff, the designer may simply set the reputation

process St for each agent equal to his continuation payoff process Wt, thus controlling directly

the agents’ payoffs. In particular, an agent is removed from the platform when his reputation

2Although we follow the convention of calling dXi
t the output stream of agent i, it should b more generally

interpreted as just a stream of signals on agent i’s unobservable effort process, which need not be directly
related to his contribution to the output of the platform.
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st = wt = 0, new agents are granted a continuation payoff of w0 = s0, and agents are never

allowed a continuation payoff above the maximum reputation level, so that w∗ = s∗ is the

maximum continuation payoff. In this way, we ultimately will allow the principal to directly

choose w0 and w∗ as a part of her platform design problem.

From standard results in continuous-time contracting,3 the following are known:

• While the agent remains on the platform (i.e., t ≤ τ), there exists a process βt repre-

senting the sensitivity of the agent’s continuation value to output:

dWt = rWt − (u− c(et))dt+ βt(dXt − µetdt).

• The contract is incentive compatible if and only if for all t ≤ τ and Wt ≥ 0, et = H

implies βt ≥ λ and et = L implies βt ≤ λ, where λ := c
µH−µL

.

So long as the platform designer’s objective is increasing in effort, terminating an agent

is inefficient (i.e., on-path agents are terminated due to bad luck, not because they were

shirking at the moment). Therefore, the principal wishes to minimize volatility, and thus it

is optimal to set βt = λ to induce working and βt = 0 to induce shirking. Hence, when the

agent works, his continuation value evolves as

dWt = rWtdt− (u− c)dt+ λ(dXt − µHdt)

= (rWt − (u− c))dt+ λdBt. (2.2)

When the agent shirks, his continuation value evolves (deterministically) as

dWt = rWtdt− udt. (2.3)

The best outcome for the agent would be to shirk at all times and remain on the platform

forever, so we have Wt ≤ u/r. Through (2.3), this implies that continuation value has

downward drift while the agent works. For later convenience, we define ρ(w) := rw − u so

that ρ(w∗) is the downward drift at w∗. Now suppose that w∗ is an upper bound on the

agent’s continuation value. The law of motion (2.2) while the agent works guarantees that

the agent’s continuation value will reach w∗ in finite time almost surely, and shirking must

occur at this point. Formally, the process Wt that results belongs to a class of diffusions

known as Sticky Brownian Motion.4

3See DeMarzo and Sannikov (2006) Lemmas 2 and 3 or Zhu (2013) Lemmas 3.1 and 3.2.
4See Harrison and Lemoine (1981) and Zhu (2013).
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2.1 Overview of Method

Now that the model has been presented, the method we use to solve our platform design

problem is outlined in four steps:

1. Determine agents’ law of motion: fixing contract terms (u,w0, w∗) exogenously such

that incentive compatibility holds, characterize the evolution of the state variable for

each agent as a stochastic process. In the current paper, the contract specifies a firing

rule as a function of the agent’s output process, which allows shirking at certain times.

The relevant state variable is the agent’s continuation value, w.

2. Find steady-state distribution: determine a stationary distribution for the state vari-

able, using the law of motion from above along with the conditions arising from the

contract specifics, (u,w0, w∗).

3. Endogenize flow payoffs: since agents on a platform exert externalities on one another,

the flow payoffs they earn u must be consistent with the steady-state distribution of

agents and their actions. This requirement determines a feasible set of platform design

parameters, namely w0 and w∗, over which the platform designer can optimize.

4. Optimize platform design parameters: for a given objective function for the platform

designer, determine the optimal values of w0 and w∗ from the feasible set derived in

step 3.

3 The Steady State

A steady state corresponds to a stationary distribution of agents at all possible levels of

continuation payoff, as poorly performing agents drop off the platform, new agents arrive,

and as the continuation value of all agents within the system are changing in response to

their Brownian output.

The formal continuous-time derivation of the stationary distribution is given in the ap-

pendix. To illustrate the derivation, we discretize the distribution of agents as well as the

continuation value process. Suppose that the maximum continuation value is w∗ and that

new agents begin with a continuation value of w0 ∈ (0, w∗). Mathematically, the steady

state in our setting is equivalent to the stationary distribution of a process W defined on an

interval [0, w∗] as follows:

• When Wt = 0, it immediately resets to w0

• For Wt ∈ (0, w∗), it evolves as (2.2)
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• For Wt = w∗, it evolves as (2.3).

We begin by characterizing the stationary distribution away from the special points 0, w0

and w∗. Suppose that at a particular continuation value w ∈ (0, w0) ∪ (w0, w∗), a mass

f(w)dw of agents resides. The law of motion (2.2) for an individual agent’s continuation

value can be approximated by a random walk as follows: starting from w, it moves up or

down a step of size dw = λ
√
dt, where upward steps occur with probability

q(w; dt) := .5

(
1 +

rw − (u− c)
λ

√
dt

)
.

In a steady state, the measure of agents exiting from each w must equal the measure of

agents entering. Since all agents starting from w must exit (up or down), we have

f(w)dw = f(w − dw)dwq(w − dw; dt)︸ ︷︷ ︸
agents moving up from w − dw

+ f(w + dw)dw(1− q(w + dw; dt))︸ ︷︷ ︸
agents moving down from w + dw

.

By performing a second-order Taylor expansion of the right side with respect to w, dropping

terms of order dt and higher and simplifying, we obtain the standard Kolmogorov forward

equation

rf(w) + (rw − (u− c))f ′(w) =
λ2

2
f ′′(w). (3.1)

The general solution to the ODE (3.1) can be written in closed form and has two constants

of integration:

f(w) = eγ(w)
2

(C1 + C2erf {γ(w)}) , (3.2)

where γ(w) := rw−(u−c)
λ
√
r

and erf {x} := 2√
u

∫ x
0
e−t

2
dt is the Gauss error function. Note that

(3.2) must hold separately on both the left and right segments of the distribution. Let f−(w)

and its associated constants C−1 , C
−
2 denote the solution to (3.2) on the interval (0, w0), and

likewise define f+(w), C+
1 and C+

2 on the interval (w0, w∗).

Since the process W is a sticky Brownian motion, there is a positive measure of times t

at which Wt = w∗. This implies that the stationary distribution involves an atom of mass

at exactly w∗. Let ν denote the measure associated with the steady state distribution on

[0, w∗], so that the mass at w∗ is ν{w∗}. For w ∈ (0, w0] we have ν(dw) = f−(w)dw and for

w ∈ [w0, w∗) we have ν(dw) = f+(w)dw. There are five constants in total to be determined

(ν{w∗}, C−1 , C−2 , C+
1 , C

+
2 ), and these are pinned down by five boundary conditions stated in

Lemma 3.1. We now provide a heuristic derivation of these boundary conditions.

To obtain boundary conditions 1 and 5, we note that in a short interval of time dt, the
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measure of agents exiting the platform must equal the exogenous inflow ψdt. To approximate

the former, note that the measure of agents at dw (i.e., one step above 0) is f−(dw)dw =

λ
√
dtf−(0) +λ2dtf ′−(0). Of these, a fraction 1− q(dw; dt) move a downward step, for a total

exiting measure of

(1− q(dw; dt))f−(dw)dw =
λ

2

√
dtf−(0) + dt

[
λ2

2
f ′−(0)− (rw − (u− c))f−(0)

]
.

Since the above must equal ψdt, it must be that the term of order
√
dt vanishes; that is,

f−(0) = 0, which is condition 1 in Lemma 3.1 below. Matching terms of order dt, we obtain

condition 5.

Condition 2 is a standard value-matching condition which results from the continuity and

volatility of Brownian motion. Condition 3 equates the outflow of agents at 0 to the inflow

of agents at w0. By the above results, the outflow of agents at 0 is λ2

2
dtf ′−(0). The inflow

of agents at w0 is given by the concavity of the kink between densities at w0 (see Figure 1),

which is f+(w)dw − f−(w−dw)dw+f+(w+dw)dw
2

= λ2

2
dt
[
f ′−(w0)− f ′+(w0)

]
. Equating the inflow

and outflow, we obtain condition 3. Intuitively, this condition says that the faster agents

exit at 0, the more pronounced the kink will be at w0.

Finally, condition 4 relates the (stochastic) upward movement of agents just below w∗

to the (deterministic) downward movement of agents at w∗ due to sticky reflection. To a

first order approximation, the measure of agents just below w∗ is f+(w∗−)dw, of which 1/2

move a step upward. The measure of agents at exactly w∗ is ν{w∗}, all of which move down

a distance −ρ(w∗) > 0; equivalently, a multiple −ρ(w
∗)

dw
move down one step on the random

walk grid. Equating the upward and downward movements yields 1
2
f+(w∗)dw = −ρ(w∗)

dw
ν{w∗},

which rearranges to condition 4. Since ρ(w∗) is closer to 0 when w∗ is closer to u/r, this

condition says that higher continuation values are sustained by letting the agent shirk longer,

in the sense of slowing down the rate of sticky reflection. In turn, slower reflection results in

a larger atom of agents at w∗ in a steady state, holding fixed f(w∗−).

Lemma 3.1. The steady-state distribution of agents is characterized by an atom ν{w∗} and

piecewise densities f− and f+ of the form (3.2) defined on (0, w0] and [w0, w∗), respectively,

subject to the following boundary conditions:

1. f−(0+) = 0.

2. f−(w0) = f+(w0).

3. f ′−(0+) = f ′−(w0)− f ′+(w0).

4. λ2

2
f+(w∗−) + ρ(w∗)ν{w∗} = 0.
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5. λ2

2
f ′−(0+) = ψ.

In the appendix, we show that the boundary conditions admit a unique solution, and all

of the constants are determined explicitly. These results are summarized in the following

proposition.

Proposition 3.1. In a steady state, the distribution of agents is as follows:

• f−(w) = eγ(w)
2 ψ
√
u

λ
√
r

[
erf
{
u−c
λ
√
r

}
+ erf {γ(w)}

]
• f+(w) = eγ(w)

2 ψ
√
u

λ
√
r

[
erf
{
u−c
λ
√
r

}
+ erf {γ(w0)}

]
• ν{w∗} = λ2f+(w∗)

2(u−rw∗)

This fully characterizes the distribution of continuation utilities on the platform in a

steady state as a function of the highest achievable continuation utility, w∗ and the level at

which new agents are inserted w0. In words, the distribution consists of a density function

composed of two convex segments (with a kink where they meet at w0) as well as a mass

point at the top of the support, w∗; Figure 1 illustrates. The question is what values for w0

and w∗ the principal can and should set.

w
w0 w∗

f−(w)

f+(w)

Figure 1: Steady state distribution of agents (omitting the atom at w∗).

4 The Feasible Set

Prior to this section it has sufficed to interpret u as an exogenous flow payoff that the

principal can promise the agents on the platform. In this section, we impose the constraint

that each agent’s flow payoff is a function of the efforts of other agents on the platform.

Since the latter depends on the design parameters and u itself, u is a fixed point. We

assume that u is a nondecreasing function of the fraction of agents working on the platform.
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This captures either of two distinct kinds of interactions on real-world platforms: (i) agents

randomly match with other agents for short interactions, or (ii) agents collectively produce

some public good that gets distributed evenly among them.

Define the measure of agents active (i.e., working) in a steady state by

α(u,w0, w∗) :=

∫ w0

0

f−(w) dw +

∫ w∗

w0

f+(w) dw,

and (with some abuse of notation) define the measure of non-active agents at the top of the

distribution by

ν(u,w0, w∗) := ν{w∗}.

Denote the fraction of agents working by

Q(u,w0, w∗) :=
α(u,w0, w∗)

α(u,w0, w∗) + ν(u,w0, w∗)
. (4.1)

The endogenous flow utility produced when Q = Q(u,w0, w∗) are working is U(Q), where

U : [0, 1]→ R+ is a nondecreasing function which is not identically zero.

In order to define feasibility, we state two conditions:

0 < w0 ≤ w∗ ≤ u/r (4.2)

u = U(Q(u,w0, w∗)). (4.3)

Definition 4.1. A platform (u,w0, w∗) is feasible if (4.2) and (4.3) are satisfied.

The key part of Definition 4.1 is the fixed point condition u = U(Q(u,w0, w∗)). This

condition says that the flow payoff that each agent receives (which the principal exogenously

“promises”) must equal the flow payoff generated by the platform. Condition (4.2) says

that u must be non-negative or agents would be better off leaving the platform (individual

rationality). Moreover, w∗ ≤ u
r

because the highest level of continuation utility can at most

equal the perpetuity value of shirking forever (i.e., when the process is infinitely sticky, w∗

becomes an absorbing state). Note, however, that in principle u can be less than c – agents

may receive a negative net flow payoff while in the working state, yet prefer to remain on

the platform to obtain a positive net flow payoff while shirking.

In the next section, the principal will maximize her objective (three possibilities are

explored) V (u,w0, w∗) over the set of feasible platforms. For tractability, most of the analysis

that follows will focus on a particular specification of the function U (see Specification

1 below), but first, we briefly address an alternative specification which allows sufficient
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conditions for existence to be stated in closed form.5

Proposition 4.1 considers the case where µH and µL are the flow output values (not just

signal drift values) of high and low effort, respectively, and each agent obtains the average

(or expected, in the case of random matching) output as a flow payoff. Define

r∗ :=
2(µH − µL)2

c

(
c+ µH − 2µL − 2

√
(c− µL)(µH − µL)

)
. (4.4)

Proposition 4.1. Let U(Q) = QµH + (1 − Q)µL and for µL ≤ c. If µL > c or if µL ≤ c

and r ∈ [0, r∗], then the feasible set is nonempty (i.e., there exists a triple (u,w0, w∗) that

satisfies (4.2) and (4.3)). The cutoff r∗ is increasing in µH and decreasing in c.

We now state a specific functional form for agents’ flow payoffs from being on the platform,

which allows us to more sharply describe the feasible set. In particular, the specification is

that agents obtain a fixed positive flow benefit from being on the platform provided that

a sufficiently high fraction of agents are working, and this flow benefit is exactly c. This

ensures that agents’ continuation values have upward drift since they only earn positive net

flow payoffs while shirking.

Specification 1. There exists a constant Q̄ ∈ (0, 1) such that each agent’s flow utility from

being on the platform while a fraction Q of the other agents are working is

u(Q) =

c if Q ≥ Q̄

0 otherwise.

Under Specification 1 we can prove several claims about the shape of the feasible set

(and, relevant to later results, about the relationship between the design parameters and

the measures α and ν of working and shirking agents). First, we show that fixing w∗, the

platform is feasible if and only if w0 is sufficiently small; in other words, the feasible set lies

under some curve w̄0(w∗). Intuitively, if w0 is lower, then fewer agents reach the shirking

state w∗ before being kicked off, and so the fraction of agents who work is higher. Moreover,

this curve is differentiable where w̄0(w∗) < w∗. Next, we show that, fixing w0, the fraction of

working agents is a single-peaked function of w∗, and thus the horizontal cross sections of the

feasible set are intervals. For small w∗, say very close to w0, increasing w∗ can improve the

average effort on the platform by delaying the time at which new agents shirk. On the other

hand, as w∗ increases, agents must spend a longer amount of time shirking – the reflecting

barrier at w∗ becomes stickier. Trivially, the feasible set shrinks in the sense of set-inclusion

5Despite this advantage, the specification in Proposition 4.1 is much less tractable for our later purposes.
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as Q̄ increases; we also show that for sufficiently large Q̄, the feasible set lies entirely below

the 45-degree line. Finally, we note that a “wedge” always exists between the bottom left of

the feasible set and the 45-degree line. Figure 2 shows the feasible set under Specification 1

for fixed values of the parameters (r, c, u, λ, ψ) and two values of Q̄.

Proposition 4.2 (The Feasible Set). The feasible set can be written as {(w∗, w0) ∈ R2
+ :

w0 ∈ (0, w̄0(w∗)]}, where w̄0(w∗) is a single-peaked function taking values in [0, w∗]. The

feasible set is nonempty if Q̄ is not too large. If w∗ is such that w̄0(w∗) < w∗, then w̄0 is

continuously differentiable at w∗. For sufficiently small w0 > 0, w∗ > w0 for all feasible

(w∗, w0). For sufficiently large Q̄, the feasible set lies strictly below the 45-degree line.

w∗

w0

(a) Q̄ = .6

w∗

w0

(b) Q̄ = .4

Figure 2: Feasible set for (r, c, u, λ, ψ) = (.05, .6, .6, 1.2, 1) and Q̄ = .4, .6.

To conclude this section, we show that a platform may not exist if agents are myopic.

Proposition 4.3 (Non-existence of a platform). Consider any non-decreasing U(Q). If

r =∞, so agents are perfectly myopic, then a platform fails to exist.

The intuition for this is straightforward. each agent is motivated to exert high effort

by the threat of eventual termination and by the promise of eventual vacation. As he

becomes perfectly impatient, the prospect of future sticks and carrots lose their salience,

and it becomes impossible to incent high effort.
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5 The Principal’s Problem

We now solve the problem of the platform designer under three different objectives:

maximizing per capita output, maximizing entry fees, and maximizing total platform size.

5.1 Maximizing Per Capita Output

We now consider a designer whose objective is to maximize steady-state output per

capita. That is, the platform designer solves

max
(u,w0,w∗)

Q(u,w0, w∗)µH + (1−Q(u,w0, w∗))µL

subject to (4.2) and (4.3), which is equivalent to maximizing Q(u,w0, w∗). Since Q is de-

creasing in w0, the optimal platform is degenerate – the platform designer would like to set

w0 “as close as possible” to 0 and the platform will have virtually no agents. If we extend the

feasible set to allow w0 = 0, then a solution exists, and the optimal w∗ is interior, which is in-

tuitive given the wedge result from Proposition 4.2 and the fact that that Q is a single-peaked

function of w∗. Interestingly, Q remains less than 1: although new agents are arbitrarily

unlikely to reach the shirking state, a positive fraction of agents remain shirking. Alterna-

tively, this solution can be characterized as a supremum over feasible platforms with w0 > 0.

Define VPC = sup(u,w0,w∗)Q(u,w0, w∗)µH + (1−Q(u,w0, w∗))µL (PC for per-capita). Then

there exists a unique pair (w0
PC , w

∗
PC) = (0, w∗PC) such that for any sequence {(w0

n, w
∗
n)}∞n=1

such that each (u,w0
n, w

∗
n) is feasible, V (u,w0

n, w
∗
n)→ VPC if and only if (w0

n, w
∗
n)→ (0, w∗PC).

Proposition 5.1 (The optimal platform for per-capita surplus is degenerate). Under Spec-

ification 1, there exists a unique pair (w0
PC , w

∗
PC) = (0, w∗PC) such that the platform designer

maximizes per-capita surplus by setting (w0, w∗) arbitrarily close to (0, w∗PC).

This result is reminiscent of partnership organizations in which senior (i.e., vested) part-

ners recruit junior colleagues on the lowest rung of the ladder and promote virtually none

of them. Interestingly we find that such an organization is itself very small in steady state,

as partners trade off growth of the organization in order to maintain a high percentage of

hard-working juniors.

Entry Fees

Suppose the platform designer can charge a fixed entry fee p from each new agent to the

platform. Assuming agents have an outside option of 0, agents are willing to pay up to w0 to
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join the platform. Recalling that ψ is the exogenous inflow rate of new agents, the platform

designer can thus earn a maximum flow payoff of ψw0. The design problem then reduces to

maximizing V (u,w0, w∗) = w0 subject to (4.2) and (4.3).

By the single-peakedness result in Proposition 4.2, when the feasible set is nonempty

there exists a unique feasible platform which solves the principal’s problem; if there were

two such feasible platforms, a third would exist that yields higher Q, and there would be

room to increase w0 while remaining in the feasible set. This platform is the top of the

feasible set, as shown in Figure 2. If Q̄ is sufficiently large that the feasible set lies strictly

below the 45-degree line, then this solution must involve w0 < w∗. That is, even though

agents are likely to reach higher continuation values than w0 while they are on the platform,

the designer cannot start them at higher levels, because this would increase the fraction of

agents who are shirking and violate feasibility.

Proposition 5.2. Under Specification 1, if the feasible set is nonempty, there exists a unique

platform (u,w0
EF , w

∗
EF ), with w∗EF > w∗PC, that maximizes the platform designer’s payoff from

entry fees. For sufficiently large Q̄, w0
EF < w∗EF .

Platform Size

Suppose the platform designer wishes to maximize the total size of the platform,

V (u,w0, w∗) = α(u,w0, w∗) + ν(u,w0, w∗). In the appendix (Lemmas B.1 and B.2), we

show that both α and ν are increasing in both w0 and w∗ in the feasible set. Hence, any

platform which maximizes the platform’s total size must lie on the northeastern frontier of

the feasible set: it must be of the form (u,w0, w∗), where w∗ ≥ w∗EF and where w0 = w̄0(w∗).

Moreover, if Q̄ is sufficiently large, we argue that platform size must be maximized on the in-

terior of this northeastern frontier. First, platform size cannot be maximized at the bottom

right corner of the feasible set, since platform size vanishes as w0 → 0 (this argument does

not depend on Q̄ being sufficiently large). Second, if Q̄ is sufficiently large, then platform

size cannot be maximized at (u,w0
EF , w

∗
EF ), because the designer can trade off a marginal

reduction in w0 for a (relatively) arbitrarily large increase in w∗. In other words, when Q̄ is

sufficiently large, the top of the feasible set is flat, and the indifference curve for platform

size which intersects the top of the feasible set must cut into the feasible set, and there exist

other points of the feasible set which yield a larger platform size.

Proposition 5.3. Under Specification 1, if the feasible set is nonempty, platform size is

maximized on the northeastern frontier of the feasible set. Moreover, if Q̄ is sufficiently

large, then platform size is maximized on the interior of this frontier.
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Numerically, it appears that there is a unique point in the feasible set which maximizes

platform size.6 Figure 2 shows a numerically solved example.

w∗

w0

per capita output

entry fees

platform size

Figure 3: Numerical solutions to principal’s problem under various objectives for
(r, c, u, λ, ψ, Q̄) = (.05, .6, .6, 1.2, 1, .6). Here, the platforms that maximize per capita out-
put, entry fees, and platform size have coordinates (3.62, 0), (4.97, 4.05) and (5.88, 3.16),
respectively.

6 Discussion

We have proposed a model of platform design in which there is a large number of small

agents, whose efforts exert positive externalities but whose interactions are such that high

effort can only be incentivized through a central reputation system. Absent transfer pay-

ments, agents must be permitted to shirk in some instances after good performance. Under

the Brownian monitoring (or output) technology, this implies that agents’ continuation val-

ues follow a sticky Brownian motion. Using techniques in stochastic calculus, we characterize

the steady state of the platform as a stationary distribution over continuation values. Fi-

nally, we frame the principal’s optimization problem in terms of the steady state distribution,

where she optimizes platform design parameters subject to a feasibility constraint.

Our methods could be applied to settings with other kinds of dynamics. For example,

although we have considered an effort-based model, it could be that the value to the platform

6This is the subject of ongoing analytical work.
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of an agent is an exogenous type, about which the principal and each agent learn over time

(through, say, Brownian diffusions with type-dependent drift). In this case, our steady state

would be with respect to the reputation of each agent. At low reputations, the principal

would remove agents from the platform, while at high reputations, agents might take an

outside option.

Our model could also be extended to capture other aspects of real world platforms. For

example, we have assumed an exogenous inflow rate of new agents, but one could endogenize

the inflow rate, say to be an increasing function of the starting payoff w0. We have also

assumed that no agents voluntarily leave the platform, but there are several ways that

agents could leave a platform in practice. Agents might have idiosyncratic shocks that force

them to leave the platform, independent of their continuation values; we conjecture that this

would simply increase the effective discount factor of agents, and would reduce the feasible

set. A more substantively different possibility would be to give agents a positive outside

option; this would put a positive lower bound on continuation values and would also restrict

the feasible set.

Finally, we have assumed that agents are motivated by the threat of permanent expulsion.

It, however, would be interesting to study a closed platform (i.e., with no exogenous inflows)

in which poor performance resulted in temporary expulsion at some endogenously determined

level of continuation utility w∗ > 0 with reinsertion at w0. We leave this and the other

variations of the model discussed above for future work.

A Proofs for Section 3

Proof of Lemma 3.1. The infinitesimal generator of the W process is the operator Γ defined

by

Γh(w) = lim
dt↓0

Ew[h(Wdt)]− h(w)

dt
.

This is a type of stochastic derivative, taken in expectation. For all w > 0 and functions h

in a suitable domain, the above limit is well-defined and takes values:

Γh(w) =

(rw∗ − u)h′(w∗) if w = w∗

(rw − (u− c))h′(w) + λ2

2
h′′(w) if w ∈ (0, w∗).

In particular, the above is valid for all h such that h is twice continuously differentiable

and bounded and that Γh(w) is continuous, including at w∗. For w = 0, the generator is
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not defined since the jump from 0 to w0 is instantaneous. For convenience, define µ(w) :=

rw − (u− c) and recall that ρ(w) := rw − u.

Now ν is a stationary distribution if and only if for all t ≥ 0 and all functions h, we have∫
(0,w∗]

h(w)ν(dw) =

∫
[0,w∗]

Ew[h(Wt)]ν(dw). (A.1)

Essentially, this condition says that any statistic of a stationary distribution is unchanging

over time. In order to characterize a steady-state distribution, we want to transform the

right side of the above expression into terms involving only h′′(w) and h′(w∗). Expanding

the right hand side using Ito’s formula, we have∫
(0,w∗]

Ew[h(Wt)]ν(dw) =∫
(0,w∗]

(
h(w) + Ew

[∫ t

0

Γh(Ws)ds+
∑
0<s≤t

∆h(W )s

])
ν(dw)

where ∆h(W )s := h(Ws) − h(Ws−) for s > 0. Subtracting the left hand side of (A.1) from

this, we have

0 =

∫
(0,w∗]

Ew

[∫ t

0

Γh(Ws) ds+
∑
0<s≤t

∆h(W )s

]
ν(dw)

=

∫
(0,w∗]

Ew
[∫ t

0

Γh(Ws)

]
dsν(dw) +

∫
(0,w∗]

Ew

[∑
0<s≤t

∆h(W )s

]
ν(dw)

Dividing through by t and taking limits as t→ 0 yields

0 =

∫
(0,w∗]

Γh(w)ν(dw) + lim
t→0

1

t

∫
[0,w∗]

Ew

[∑
0<s≤t

∆h(W )s

]
ν(dw)

=

∫
(0,w∗]

Γh(w)ν(dw) +
λ2

2
f ′−(0)(h(w0)− h(0)). (A.2)

To obtain the second term of (A.2), ∆h(W )s > 0 only when Ws− = limt→sWt = 0, and in

these cases we have ∆h(W )s = h(Ws)−h(Ws−) = h(w0)−h(0). To a first order approxima-

tion, the second term of (A.2) is thus the expectation, over starting points w, of the size of

a single jump, h(w0)− h(0), times the probability that the process starting from w reaches

0 (the probability of 2 or more jumps may be ignored since once the process resets at w0 it

is very far away from 0). Thus the second term above is (h(w0)− h(0))
λ2f ′−(0)

2
.
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The first term of (A.2) can be expanded as∫
(0,w∗)

[
µ(w)h′(w) +

λ2

2
h′′(w)

]
ν(dw) + ρ(w∗)h′(w∗)ν{w∗}

=

∫
(0,w∗)

µ(w)h′(w)ν(dw) +

∫
(0,w∗)

λ2

2
h′′(w)ν(dw) + ρ(w∗)h′(w∗)ν{w∗} (A.3)

We now focus on the first term of (A.3). The integral can be split into two regions, (0, w0)

and [w0, w∗). Then, by writing h′(w) = h′(w0) −
∫ w0

w
h′′(y)dy, the first term of (A.3) is

equivalent to

∫
(0,w0)

µ(w)

[
h′(w0)−

∫ w0

w

h′′(y)dy

]
f−(w)dw

+

∫
[w0,w∗)

µ(w)

[
h′(w0) +

∫ w

w0

h′′(y)dy

]
f+(w)dw

= h′(w0)

∫
(0,w∗)

µ(w)ν(dw)−
∫ w0

0

[∫ w

0

µ(y)f−(y)dy

]
h′′(w)dw

+

∫
[w0,w∗)

[∫
[w,w∗)

µ(y)f+(y)dy

]
h′′(w)dw

Collecting terms thus far, the first term of (A.2) becomes∫
(0,w∗]

Γh(w)ν(dw) =

∫
(0,w0)

h′′(w)

[
λ2

2
f−(w)−

∫ w

0

µ(y)f−(y)dy

]
dw

+

∫
[w0,w∗)

h′′(w)

[
λ2

2
f+(w) +

∫
[w,w∗)

µ(y)f+(y)dy

]
dw

+ h′(w0)

∫
(0,w∗)

µ(w)ν(dw)

+ ρ(w∗)h′(w∗)ν{w∗}. (A.4)

The first two terms of (A.4), having integrals involving h′′(w) as coefficients, are all set. Take

the last two terms of (A.4) and add back in the second term on the RHS of (A.2) to obtain

the expression

λ2

2
f ′−(0)(h(w0)− h(0)) + h′(w0)

∫
(0,w∗)

µ(w)ν(dw) + ρ(w∗)h′(w∗)ν{w∗}. (A.5)

As noted, the goal is to transform as much of the h involvement above into h′′ and h′(w∗)

terms. For the first term of (A.5), integrate the derivatives twice and exchange the order of
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integration to get

λ2

2
f ′−(0)(h(w0)− h(0)) =

λ2

2
f ′−(0)

∫ w0

0

h′(w)dw

=
λ2

2
f ′−(0)

∫ w0

0

[
h′(w∗)−

∫ w∗

w

h′′(y)dy

]
dw

=
λ2

2
f ′−(0)

(
w0h′(w∗)−

∫ w0

0

[∫ w∗

w

h′′(y)dy

]
dw

)

=
λ2

2
f ′−(0)

(
w0h′(w∗)−

∫ w0

0

wh′′(w)dw −
∫ w∗

w0

w0h
′′(w)dw

)
(A.6)

For the second term of (A.5), we have

h′(w0)

∫
(0,w∗)

µ(w)ν(dw) =

(
h′(w∗)−

∫ w∗

w0

h′′(y)dy

)∫
(0,w∗)

µ(w)ν(dw)

= h′(w∗)

∫
(0,w∗)

µ(w)ν(dw)−
∫ w∗

w0

h′′(w)

[∫
(0,w∗)

µ(y)ν(dy)

]
dw (A.7)

where we swap w and y as variables of integration for later convenience. Plugging (A.6) and

(A.7) back into (A.5) and adding back in the first two terms of (A.4), we can write (A.2) as

0 = h′(w∗)M∗ +

∫
(0,w0)

h′′(w)M−(w)dw +

∫
[w0,w∗)

h′′(w)M+(w)dw, (A.8)

where we define

M∗ :=
λ2

2
f ′−(0)w0 +

∫
(0,w∗)

µ(w)ν(dw) + ρ(w∗)ν{w∗}

M−(w) := −λ
2

2
f ′−(0)w +

λ2

2
f−(w)−

∫ w

0

µ(y)f−(y)dy

M+(w) := −λ
2

2
f ′−(0)w0 +

λ2

2
f+(w) +

∫ w∗

w

µ(y)f+(y)dy −
∫
(0,w∗)

µ(y)ν(dy).

Equation (A.8) is exactly what we are after. It allows us to completely characterize the

steady-state distribution. Specifically, because h′(w∗) and h′′(w) are completely free (up to

the differentiability conditions), the expressions attached to them must all vanish:

M∗ = 0

M−(w) ≡ 0
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M+(w) ≡ 0.

Equation (A.8) thus implies the following:

1. From M ′′
−(w) = 0 and M ′′

+(w) = 0, we recover the Kolmogorov forward equation (3.1)

on the left and right pieces.

2. M−(0+) = 0 gives f−(0+) = 0.

3. M−(w0) = M+(w0) implies f−(w0) = f+(w0).

4. M ′
−(w0) = M ′

+(w0) implies f ′−(0) = f ′−(w0)− f ′+(w0).

5. 0 = M∗ +M+(w∗) implies λ2

2
f+(w∗−) + ρ(w∗)ν{w∗} = 0.

6. λ2

2
f ′−(0) = ψ.

Proof of Proposition 3.1. As shown above, the steady state distribution of agents can be

described by the equations

f±(w) = eγ(w)
2

(C±1 + C±2 erf {γ(w)})

subject to the constraints derived immediately above, where γ(w) := rw−(u−c)
λ
√
r

and erf {z} :=
2√
u

∫ z
0
e−t

2
dt is the Gauss error function.

As f−(0) = 0, we have:

0 = e
(u−c)2

λ2r

(
C−1 + C−2 erf

{
−(u− c)
λ
√
r

})
Because the error function has odd symmetry, this means that

C−1 − C−2 erf

{
u− c
λ
√
r

}
= 0

Knowing too that f ′−(0) = 2ψ
λ2

, and by differentiating f−(w), we get:

2ψ

λ2
= 2γ(0)γ′(0)eγ(0)

2

(
C−2 erf

{
u− c
λ
√
r

}
+ C−2 erf {γ(0)}

)
+ eγ(0)

2

C−2 γ
′(0)erf ′{γ(0)}

= 2eγ(0)
2

C−w γ
′(0)

e−γ(0)
2

√
u

=
2C−2
√
r

λ
√
u

⇒ C−2 =
ψ
√
u

λ
√
r
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Thus the lower segment of the distribution function is

f−(w) = eγ(w)
2

(
ψ
√
u

λ
√
r

[
erf

{
u− c
λ
√
r

}
+ erf {γ(w)}

])
(A.9)

Since f−(w) and f+(w) must agree at w0, we set the lower and upper f functions equal

at w0 to get

f+(w0) = f−(w0) = eγ(w
0)2
(
ψ
√
u

λ
√
r

[
erf

{
u− c
λ
√
r

}
+ erf

{
γ(w0)

}])
= eγ(w

0)2(C+
1 + C+

2 erf
{
γ(w0)

}
)

and thus, by rearranging terms, we find that

C+
1 =

ψ
√
u

λ
√
r

[
erf

{
u− c
λ
√
r

}
+ erf

{
γ(w0)

}]
− C+

2 erf
{
γ(w0)

}
Therefore,

f+(w) =

eγ(w)
2

(
ψ
√
u

λ
√
r

[
erf

{
u− c
λ
√
r

}
+ erf

{
γ(w0)

}]
− C+

2 erf
{
γ(w0)

}
+ C+

2 erf {γ(w)}
)

and, differentiating both f+(w) and f−(w), we get

f ′+(w) = 2γ(w)γ′(w)f+(w) + eγ(w)
2

C+
2 erf ′{γ(w)}γ′(w)

and

f ′−(w) = 2γ(w)γ′(w)f−(w) +
ψ
√
u

λ
√
r
eγ(w)

2

erf ′{γ(w)}γ′(w)

Because f ′−(0) = f ′−(w0)− f ′+(w0), it must be that

C+
2 =

ψ
√
u

λ
√
r

[
eγ(w

0)erf ′{γ(w0)}γ′(w0)− eγ(0)2erf ′{γ(0)}γ′(0)
]

eγ(w0)2erf ′{γ(w0)}γ′(w0)
= 0

Thus, the upper segment of the distribution function is

f+(w) = eγ(w)
2ψ
√
u

λ
√
r

[
erf

{
u− c
λ
√
r

}
+ erf

{
γ(w0)

}]
(A.10)

Finally, completing the derivation of the distribution of agents in the steady state, the
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mass of agents at w∗, ν{w∗}, satisfies

ν{w∗} =
λ2f+(w∗)

2(u− rw∗)
.

B Proofs for Section 4

Proof of Proposition 4.1. Let Q(u,w0, w∗) := α(u,w0,w∗)
α(u,w0,w∗)+ν(u,w0,w∗)

, the fraction of agents

working. Taking w0 → 0 and using L’Hôpital’s rule,

lim
w0→0

Q(u,w0, w∗) =
∂
∂w0α(u,w0, w∗)

∂
∂w0α(u,w0, w∗) + ∂

∂w0ν(u,w0, w∗)
|w0=0

=

∫ w∗
0

exp(γ(w)2) dw∫ w∗
0

exp(γ(w)2) dw + λ2

2(u−rw∗) exp(γ(w∗)2)

=: Q̂(u,w∗).

Taking u ↓ rw∗, we have

lim
u↓rw∗

Q̂(u,w∗) =

∫ w∗
0

exp
(

(r(w−w∗)+c)2
λ2r

)
dw∫ w∗

0
exp

(
(r(w−w∗)+c)2

λ2r

)
dw +∞ · exp

(
c2

λ2r

)
= 0.

Taking u→ rw∗ + c < µH , so that γ(w∗)→ 0, we have

lim
u→rw∗+c

Q̂(u,w∗) =

∫ w∗
0

exp(r(w − w∗)2/λ2) dw∫ w∗
0

exp(r(w − w∗)2/λ2) dw + λ2

2c

.

Abusing notation, let Q̂(w∗) denote the fraction above. For a fixed point, it suffices to find

w∗ ∈ (0, (µH − c)/r) such that

Q̂(w∗)µH + (1− Q̂(w∗))µL > rw∗ + c,

which is equivalent to∫ w∗

0

exp(r(w − w∗)2/λ2) dw(µH − c− rw∗) +
λ2

2c
(µL − c− rw∗) > 0.
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The integrand above is bounded below by 1, so the whole expression on the left side is

bounded below by

w∗(µH − c− rw∗) +
λ2

2c
(µL − c− rw∗).

Letting x stand in for w∗, this expression is a concave quadratic function of x,

g(x) := Ax2 +Bx+ C, where

A := −r

B :=

(
µH − c−

λ2r

2c

)
C :=

λ2

2c
(µL − c).

Thus a sufficient condition for a fixed point is that there exists x > 0 such that g(x) > 0.

Note that if µL > c, then g(0) > 0 and we are done. For the rest of the proof, assume

µL < c, so that g(0) < 0. It follows that if g has real roots, either both are positive or both

are negative; if both roots are positive, we are done. Since both roots have the same sign,

both are positive if and only if their sum is positive. Now g has real roots, the sum of which

is positive, if and only if both of the following conditions hold:

0 < B2 − 4AC =

(
µH − c−

λ2r

2c

)2

+ 4r
λ2

2c
(µL − c) (B.1)

0 < −B
A

⇐⇒ 0 < B = µH − c−
λ2r

2c
(B.2)

Using λ = c
µH−µL

, these inequalities expand to

0 <

(
µH − c−

cr

2(µH − µL)2

)2

+ 2
cr

(µH − µL)2
(µL − c) (B.3)

0 < µH − c−
cr

2(µH − µL)2
(B.4)

Collecting r terms, the right side of (B.3) is a convex quadratic in r,

h(r) :=
c2

4(µH − µL)4
r2 +

(
−c2 + 2cµL − cµH

(µH − µL)2

)
r + (µH − c)2
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with sign pattern +,−,+. It follows that h(0) > 0 and h′(0) < 0. The inequality (B.4) is

equivalent to

r < r̄ :=
2(µH − c)(µH − µL)2

c
.

For r = r̄, the first term on the right side of (B.3) vanishes while the second term is negative,

so h(r̄) < 0. It follows that h has two real roots, both positive. Now h(r) is decreasing for

all r ∈ [0, r̄] and in this interval, h(r) ≥ 0 if and only if r < r∗, where r∗ is the lower of the

two roots of h, given explicitly by the formula (4.4).

We claim that r∗ is increasing in µH and decreasing in c. For µH it suffices to show that

the term c+ µH − 2µL − 2
√

(c− µH)(µH − µL) is increasing in µH . By direct computation,

its derivative w.r.t. µH is 1−
√
c−µL√
µH−µL

> 0 as µH > c. For c, we have

∂

∂c
r∗ =

2(µH − µL)2

c2

(
−µH + 2

√
(c− µL)(µH − µL) + 2µL − c

µH − µL√
(c− µL)(µH − µL)

)

<
2(µH − µL)2

c2

(
−µH + 2

√
(c− µL)(µH − µL) + 2µL − c

)
=

4(µH − µL)2

c2

(√
(c− µL)(µH − µL)− (µH − µL) + (c− µL)

2

)
which is negative by applying the Arithmetic Mean–Geometric Mean inequality to the pair

of positive numbers (c− µL, µH − µL).

Lemma B.1. Under Specification 1, both α(u,w0, w∗) and ν(u,w0, w∗) are increasing in w0

and Q(u,w0, w∗) is strictly decreasing in w0 for feasible (u,w0, w∗).

Proof. We have Q = α
α+ν

= 1
1+ ν

α
which is decreasing iff ν

α
is increasing, which is true iff

νw0

ν
>

αw0

α
. Using X := u−c

λ
√
r

7 and Y := ψ
√
u

λ
√
r

and expanding, these quantities are

ν =
λ2

2(u− rw∗)
f+(w∗) =

λ2

2(u− rw∗)
eγ(w

∗)2Y (erf {X}+ erf {γ(w0)})

νw0 =
ψ

u− rw∗
eγ(w

∗)2−γ(w0)2

α =

∫ w0

0

f−(w) dw +

∫ w∗

w0

f+(w) dw

=

∫ w0

0

eγ(w)
2

Y [erf {X}+ erf {γ(w)}] dw +

∫ w∗

w0

eγ(w)
2

Y
[
erf {X}+ erf

{
γ(w0)

}]
dw

7Under Specification 1, X = 0 and thus erf {X} = 0, but we keep u and c distinct to show how they
influence the various terms.
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αw0 =

∫ w∗

w0

eγ(w)
2

Y
2e−γ(w

0)2

√
u

√
r

λ
dw

=
2
√
re−γ(w

0)2

λ
√
u [erf {X}+ erf {γ(w0)}]

∫ w∗

w0

f+(w) dw

Define Z := 2
√
re−γ(w

0)2

λ
√
u[erf{X}+erf{γ(w0)}] to be the constant outside the integral. By canceling terms,

we have
νw0

ν
= Z, whereas

αw0

α
= Z

∫ w∗
w0 f+(w) dw∫ w0

0
f−(w) dw +

∫ w∗
w0 f+(w) dw

< Z, (B.5)

so we are done.

Lemma B.2. Under Specification 1, both α(u,w0, w∗) and ν(u,w0, w∗) are strictly increasing

in w∗ for feasible (u,w0, w∗).

Proof. Immediately, we have αw∗(u,w
0, w∗) = f+(w∗) > 0. Next,

νw∗(u,w
0, w∗) =

∂

∂w∗

[
λ2

2

f+(w∗)

u− rw∗

]
=
λ2

2

(u− rw∗)f ′+(w∗) + rw∗f+(w∗)

(u− rw∗)2
.

Now f ′+(w∗) = ∂
∂w∗

eγ(w
∗)2Y (erf {X} + erf {γ(w0)}) > 0, where X and Y are defined in the

proof of Lemma B.1, and the rest of the numerator above is positive, so we conclude that

νw∗(u,w
0, w∗) > 0.

The next lemma implies that for any fixed w0 > 0, there is a single (possibly empty)

interval of w∗ values for which the platform is feasible.

Lemma B.3. Under Specification 1, for all fixed w0 > 0, Q is single-peaked in w∗; that is,

if Qw∗ = 0 for some particular value of w∗, then Qw∗ is decreasing at that point.

Proof. To abbreviate, we use prime notation to denote the derivatives with respect to w∗.

Now Q = α
α+ν

= g
(
ν
α

)
where g(x) := 1

1+x
. Taking derivatives, we have Q′ = g′

(
ν
α

) (
ν
α

)′
,

which is zero if and only if
(
ν
α

)′
= 0. Moreover, Q′′ = g′′

(
ν
α

) [(
ν
α

)′]2
+ g′

(
ν
α

) (
ν
α

)′′
. Recall
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from Lemma B.2 that α′ and ν ′ are positive. Using Q′ = 0, we have Q′′ < 0 if and only if(ν
α

)′′
> 0

⇐⇒ α2ν ′′ − ανα′′ > 2αα′ν ′ − 2ν(α′)2

⇐⇒ ν ′′

ν ′
>
α′′

α′
,

where we have used α = α′ ν
ν′

. Next, recall that

ν =
λ2

2

f+
u− rw∗

=⇒ ν ′ =
λ2

2

[
(u− rw∗)f ′+ + rf+

(u− rw∗)2

]
=⇒ ν ′′ =

λ2

2

[
(u− rw∗)3f ′′+ + 2rf ′+(u− rw∗)2 + 2r2f+(u− rw∗)

(u− rw∗)4

]
>
λ2

2

[
(u− rw∗)f ′′+ + rf ′+

(u− rw∗)2

]
.

Also recall that α′ = f+ and α′′ = f ′+. Thus a sufficient condition for ν′′

ν′
> α′′

α′
is

(u− rw∗)f ′′+ + rf ′+
f ′+(u− rw) + rf+

>
f ′+
f+

⇐⇒
f ′′+
f ′+

>
f ′+
f+
.

Recalling that f+(w∗) = eγ(w
∗)2Y erf {γ(w0)}, this inequality simplifies to

1 + 2 r(w
∗)2

λ2

w∗
> 2

rw∗

λ2
,

which clearly holds. We conclude that Q′ = 0 implies Q′′ < 0, so Q is single-peaked in

w∗.

We also prove the following lemma that shows the existence of a “wedge” in the graph

of the feasible set.

Lemma B.4. For sufficiently small w0, any feasible platform requires w∗ > w0.

Proof. We show that limw0→0Q(u,w0, w0) = 0. We have Q(u,w0, w0) = α(u,w0,w0)
α(u,w0,w0)+ν(u,w0,w0)
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and we show that limw0→0
α(u,w0,w0)
ν(u,w0,w0)

→ 0. Expanding,

lim
w0→0

α(u,w0, w0)

ν(u,w0, w0)
= lim

w0→0

∫ w0

0
f−(w) dw

λ2

2(u−rw0)
f−(w0)

=
limw0→0 f−(w0)

limw0→0
d
dw

[ λ2

2(u−rw0)
f−(w0)]

.

The numerator has limit f−(0) = 0, while the denominator has limit

lim
w0→0

Y eγ(w
0)2
[
2γ(w0)γ′(w0)

(
erf {X}+ erf

{
γ(w0)

})
+

2√
u
e−γ(w

0)2γ′(w0)

]
> 0,

and it follows that limw0→0
α(u,w0,w0)
ν(u,w0,w0)

= 0, as desired.

Proof of Proposition 4.3. We know u > rw∗, and u is bounded above. Thus as r → ∞, it

must be that w∗ → 0 sufficiently quickly for rw∗ to remain finite in the limit. However, as

w∗ = 0 is infeasible, no platform exists for perfectly myopic agents.

Lemma B.5. For sufficiently small w0, Qw∗(u,w
0, w∗)|w∗=w0 > 0.

Proof. We have Qw∗ > 0 if and only if ν(u,w0,w∗)
α(u,w0,w∗)

is decreasing in w∗, or equivalently

νw∗(u,w
0, w∗)

ν(u,w0, w∗)
<
αw∗(u,w

0, w∗)

α(u,w0, w∗)

⇐⇒
(u−rw∗)f ′+(w∗)+rf+(w∗)

(u−rw∗)2
f+(w∗)
(u−rw∗)

<
f+(w∗)∫ w0

0
f−(w)dw +

∫ w∗
w0 f+(w)dw

.

After simplifying, the above holds at w∗ = w0 if and only if

(u− rw0)f ′−(w0) + rf−(w0)

f−(w0)(u− rw0)
<

f−(w0)∫ w0

0
f−(w)dw

⇐⇒ r

u
<
f−(w0)2 − f ′−(w0)

∫ w0

0
f−(w)dw

f−(w0)
∫ w0

0
f−(w)dw

. (B.6)

Now use L’Hopital’s rule twice to evaluate the limit of the RHS of (B.6) as w0 ↓ 0:

lim
w0↓0

f−(w0)2 − f ′−(w0)
∫ w0

0
f−(w)dw

f−(w0)
∫ w0

0
f−(w)dw

= lim
w0↓0

f−(w0)f ′−(w0)− f ′′−(w0)
∫ w0

0
f−(w)dw

f ′−(w0)
∫ w0

0
f−(w)dw + f−(w0)2

= lim
w0↓0

f ′−(w0)2 − f ′′′− (w0)
∫ w0

0
f−(w)dw

f ′′−(w0)
∫ w0

0
f−(w)dw + 3f−(w0)f ′−(w0)
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= +∞.

It follows that (B.6) holds for sufficiently small w0, and we conclude that

Q∗w(u,w0, w∗)|w∗=w0 > 0 for sufficiently small w0.

Define j(w∗) = limw0→0Q(u,w0, w∗); that this limit is well-defined is shown in the proof

of the following lemma.

Lemma B.6. The limit limw0→0Q(u,w0, w∗) is well-defined, and j(w∗) is a differentiable,

single-peaked function which is maximized at some w∗PC ∈ (0, u/r). Moreover, j(w∗PC) < 1.

Proof. First, compute the limit as w0 ↓ 0 of Q(u,w0, w∗) directly as

lim
w0↓0

α(u,w0, w∗)

α(u,w0, w∗) + ν(u,w0, w∗)

= lim
w0↓0

∫ w0

0
eγ(w)

2
Y erf {γ(w)} dw +

∫ w∗
w0 e

γ(w)2Y erf {γ(w0)} dw∫ w0

0
eγ(w)2Y erf {γ(w)} dw +

∫ w∗
w0 eγ(w)

2Y erf {γ(w0)} dw + λ2

2(u−rw∗)e
γ(w∗)2Y erf {γ(w0)}

=

∫ w∗
0

eγ(w)
2
dw∫ w∗

0
eγ(w)2dw + λ2

2(u−rw∗)e
γ(w∗)2

=: j(w∗).

It is clear that w∗ is differentiable. We argue that j(w∗) is single-peaked, i.e., that j′′(w∗) < 0

whenever j′(w∗) = 0. Define α0(w
∗) :=

∫ w∗
0

eγ(w)
2
dw and ν0(w

∗) := λ2

2(u−rw∗)e
γ(w∗)2 , so that

j(w∗) = α0(w∗)
α0(w∗)+ν0(w∗)

. By arguments in the proof of Lemma B.3, it is enough to show that

ν′′0
ν′0
>

α′′0
α′0

whenever
(
ν0
α0

)′
= 0, i.e., whenever α0ν

′
0 = ν0α

′
0. Define f0(w

∗) := eγ(w
∗)2 . The rest

of the proof of single-peakedness is then isomorphic to the proof of Lemma B.3, since f0(w
∗)

is a positive constant multiple of f+(w∗) (since w0 > 0 in Lemma B.3).

Next, it is straightforward to verify that j(0) = 0 and j(u/r) = 0 and that j(w∗) > 0

for all w∗ ∈ (0, u/r), and since j(w∗) is single-peaked, j attains its maximum on [0, u/r]

at some unique w∗PC ∈ (0, u/r). Finally, it is clear from inspection that j(w∗) < 1 for all

w∗ ∈ (0, u/r), so in particular, j(w∗PC) < 1.

Lemma B.7. There exists Q̂ ∈ (0, 1) such that if Q̄ ∈ (Q̂, 1), then (i) the feasible set lies

strictly below the 45-degree line and (ii) there exists a differentiable function w̄0 : w∗ 7→
w̄0(w∗) such that the feasible set is {(w∗, w0) ∈ R2

+ : w0 ∈ (0, w̄0(w∗)]}.

Proof. The proof of the first part of the lemma is by construction. Consider the function
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j : [0, u/r]→ [0, 1] defined (for this proof) by

j(w) :=

Q(u,w,w) if w ∈ (0, u/r]

0 otherwise.

Now j is continuous for all w ∈ (0, u/r], and from the proof of Lemma B.4, lim0
w →

Q(u,w0, w0) = 0, so j is also continuous at 0. Since the domain [0, u/r] is compact, j

attains its maximum value at some ŵ ∈ [0, u/r]. Since j(w) > 0 for all w > 0, ŵ 6= 0. In

addition, j(w) < 1 for all w > 0, so j(ŵ) < 1. Let Q̂ := j(ŵ) < 1. Then for all w ∈ [0, u/r],

j(w) ≤ Q̂ and thus for any Q̄ ∈ (Q̂, 1), no point along the 45-degree line is feasible, and since

w0 ≤ w∗ by definition, it must be that the entire feasible set lies strictly below the 45-degree

line.

The existence of the function w̄0 follows from the fact that Q is decreasing in w0 (Lemma

B.1). To establish differentiability, recall that since Q̄ > Q̂, the feasibility constraint binds

and not the constraint w0 ≤ w∗; that is, Q(u, w̄0(w∗), w∗) = Q̄. Since Q is continuously

differentiable whenever w0 ∈ (0, w∗), by the implicit function theorem, w̄0(w∗) is continuously

differentiable whenever w̄0(w∗) > 0.

C Proofs for Section 5

Proof of Proposition 5.1. As argued in the main text, there is no solution to the maximiza-

tion problem since w0 is restricted to be positive. Since Q is decreasing in w0 and w∗PC
maximizes j(w) (where j(w) is defined above Lemma B.6), we have V (u,w0, w∗) ≤ j(w∗PC)

for all feasible (u,w0, w∗). Next, note that j(w∗PC) is the supremum by continuity. Finally,

since w∗PC is the unique maximizer of j(w), it follows that if a sequence of feasible platforms

does not converge, the principal’s value does not converge, and if the sequence converges

to something other than (0, w∗PC , the principal’s value converges to something less than

j(w∗PC).

Proof of Proposition 5.2. Let w0
EF be the maximum w0 such that (u,w0, w∗) is feasible for

some w∗. Since Q is single-peaked in w∗ for each fixed w0 (Lemma B.3), there is a unique

w∗EF such that (u,w0
EF , w

∗
EF ) is feasible, and this is the unique platform which maximizes

entry fees.
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